Probenahme und chemische Charakterisierung von ultrafeinen Partikeln

Dominik van Pinxteren

Leibniz-Institut für Troposphärenforschung (TROPOS), Abteilung Chemie der Atmosphäre (ACD), Leipzig

Motivation

PM as a health risk: Global burden of disease study

www.healthdata.org/gbd

PM as a health risk: Global burden of disease study

→ Fine and ultrafine particles pose a significant health risk even in highly developed countries

Sampling methods

Offline approach:

- 1. Sample particles on substrate
- 2. Analyse composition in lab

Online approach:

Sample and analyse particles in one instrument

Pro: comprehensive composition Con: long sampling times (hours – days) Pro: short sampling times (sec – mins) Con: limited compositional information

Low pressure five-stage BERNER-impactor

To the vacuum pump

Sampling volume: 108 m³ in 24h

Sample collection: 5-stage Berner impactor

Sample collection on aluminum foils:

... which are chemically analysed.

Chemical analyses from impactor foils

Size-resolved sampling of UFP

5-Stage Berner Impactor:

Stage 1: $50 - 140 \text{ nm } \text{Dp}_{aer}$ Stage 2: $140 - 420 \text{ nm } \text{Dp}_{aer}$ Stage 3: $0.42 - 1.2 \text{ } \mu\text{m } \text{Dp}_{aer}$ Stage 4: $1.4 - 3.5 \text{ } \mu\text{m } \text{Dp}_{aer}$ Stage 5: $3.5 - 10 \text{ } \mu\text{m } \text{Dp}_{aer}$

Micro Orifice Uniform Deposit Impactor (MOUDI):

Stage 1: 10 – 18 nm Dp_{aer} Stage 2: 18 – 32 nm Dp_{aer} Stage 3: 32 – 56 nm Dp_{aer} Stage 4: 56 – 100 nm Dp_{aer}

Stages 5-13: 0.18 – 18 μ m Dp_{aer}

Impactor Sampling: Challenges

nanoMOUDI gravimetric mass compared to expected mass based on number concentration measurement

 \rightarrow OK at first glance...

...but it's not!

TROPOS

Mean ($\pm 1\sigma$) deviations of nanoMOUDI vs. DMPS mass for 29 samples

→ Severe overestimation of UFP mass, possibly due to "bounce-off"
 → Reasonable agreement from approx. 60 nm upwards

Size-resolved UFP chemical composition

Street canyon samples comparison autumn vs. winter

Leipzig, Eisenbahnstrasse, street canyon, 10-stage Berner impactor

Müller et al., 2012, doi: 10.1002/cite.201100208

 \rightarrow low, but measureable concentrations of ions, OC/EC + organics

Street canyon samples comparison weekday vs. weekend

- \rightarrow Reasonable trends
- ightarrow Absolute mass concentrations overestimated
- ightarrow Absolute constituents concentrations might be correct

ightarrow In the following: Berner impactor stage 1 (50-140 nm) as proxy for UFPs

Leipzig ,Aerosol 2013 - 2015' study: Source apportionment of UFPs

Experimental approach

- 2 Campaigns (summer+winter 2013-2015)
- 4 Sampling sites in parallel
- 24h samples with 5-stage Berner impactor during 21 sampling days per season
- Comprehensive chemical characterisation
- Different source apportionment approaches

van Pinxteren et al., Schriftenreihe LfULG, Heft 7/2016 van Pinxteren et al., 2016, doi: 10.1039/c5fd00228a

PMF: Identified sources in all particle size ranges

Source	Size range	Main constituents	Marker compounds
Traffic exhaust	ultrafine	WISC	Hopanes, <c25 n-<="" td=""></c25>
	coarse		Alkanes
Traffic (non-exhaust)	ultrafine	WISC, (Fe)	Copper, Barium
	fine		
	coarse		
Coal Combustion	ultrafine	WISC, Sulfate	PAHs, Arsenic, (Hopanes)
	fine		
	(coarse)		
Biomass Combustion	ultrafine	WISC,WSOC	Levoglucosan, Potassium
	fine		
	coarse		
Photochemistry	ultrafine	Sulfate, WSOC	Oxalate
	fine		
Secondary (inorganic)	fine	Nitrate, Ammonium, Sulfate	WSOC
aerosol	(coarse)		
Cooking	ultrafine	WISC	odd n-Alkanes
	fine		
Crust material (urban)	coarse	Nitrate, WSOC	odd n-Alkanes,
			Magnesium, Calcium,
			Oxalate
Fungal spores	coarse	WISC, WSOC	Arabitol
Fresh sea salt and road salt	coarse	Chloride, Sodium	Magnesium
Aged sea salt	coarse	Nitrate	Sodium, Magnesium

Sources in ultrafine particles (0.05 – 0.14 µm)

Impactor Stage 1

 \rightarrow Traffic at traffic sites: ca. 0.2 – 1 µg m⁻³, 20 – 70 % of stage 1 mass (means)

- \rightarrow Photochem. at urban sites in summer: ca. 0.2 0.6 µg m⁻³, 20 50
- \rightarrow Solid fuel combustion in winter: ca. 0.2 0.9 µg m⁻³, 20 70 %

Approx. mean contributions to UFP mass at Leipzig-Mitte:

- 50 % traffic
- 20 % combustion
- 20 % photochemistry
- 10 % cooking

Source contributions in ultrafine, fine and coarse particles

 \rightarrow Very different source contributions in different particle size ranges

UFP source contributions from airports?

UFP from jet engines

Fushimi et al., 2019: nanoMOUDI sampling @ Narita International, Japan (doi: 10.5194/acp-19-6389-2019)

Summary

Zusammenfassung

- UFP Probenahme ist problematisch,
 v.a. für Partikel < 70 nm
- UFP Gesamtmasse wird von kohlenstoffhaltigem Material dominiert
- Hohe Anteile toxischer Bestandteile wie PAK (polyzyklische aromatische Kohlenwasserstoffe) und Metalle
- Hauptquellen:
 - Verkehr (Abgas und Nicht-Abgas)
 - Feststoffverbrennung (Winter)
 - Photochemie (Sommer)
- → Die chemische Zusammensetzung kann zur Identifizierung von UFP-Quellen verwendet werden

UFP Zusammensetzung in Leipzig-Mitte

Vielen Dank für ihre Aufmerksamkeit

Annex

Source Apportionment in Leipzig: Lenschow Approach

Source apportionment approaches I: Lenschow

Traffic increment = c(LMI, EIB) - c(TRO)

Urban background increment = c(TRO) - c(MEL)

Regional background = c(MEL)

Local vs. regional PM mass contributions at LMI site

Typical regional (transported) contributions:

- 30% for ultrafines
- 70% for accumulation mode particles
- 30% for coarse particles

Mean UFP source contributions: 50 % traffic 20 % urban background 30 % regional background

→ 70 % reduction potential by local mitigation measures

van Pinxteren et al., 2016, doi: 10.1039/c5fd00228a